
Inductive visual Miner
manual

Sander J.J. Leemans

ProM 6.7, June 7, 2017

Contents

1 Usage 2

2 Process Trees 3

3 Model Visualisation 4

4 Controls & Parameters 5
4.1 Activities Slider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Paths Slider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Classifier Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.4 Pre-Mining Filters Switch . . . . . . . . . . . . . . . . . . . . . . 7
4.5 Miner Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.6 Edit Model Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.7 Visualisation Mode Selector . . . . . . . . . . . . . . . . . . . . . 7
4.8 Trace Colouring Switch . . . . . . . . . . . . . . . . . . . . . . . 9
4.9 Highlighting Filters Switch . . . . . . . . . . . . . . . . . . . . . 10
4.10 Trace View Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.11 Model Export Button . . . . . . . . . . . . . . . . . . . . . . . . 11
4.12 View Export Button . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.13 Changing the View . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Interpreting Deviations 12

6 Steps & Architecture 15

1



Figure 1: A screenshot of the Inductive visual Miner.

The Inductive visual Miner(IvM) [5] combines business process discovery
with conformance checking to provide users with an easy-to-use process mining
exploration tool. Given an event log, the Inductive visual Miner automatically
discovers a process model, compares this model with the event log and visu-
alises several enhancements such as performance measures, queue lengths and
animation. All steps are automated: if you change any parameter or change
any filter, IvM will automatically update everything necessary.

This document describes the user interface of the Inductive visual Miner and
touches on its inner workings. For more detail, please refer to [4, Ch.9]. If any
further questions arise, please do not hesitate to post them on the ProM forum
at https://www.win.tue.nl/promforum/.

1 Usage

The Inductive visual Miner is present in the ProM framework, which can be
downloaded from http://promtools.org. In this document, we describe the
Inductive visual Miner as included in ProM 6.7. We do not recommend the use
of ProM Lite, as it is meant for education purposes and has a more conservative
update strategy.

IvM can be started by loading an event log into ProM and applying the
plug-in “mine with Inductive visual Miner”. Alternatively, if you already have
a process tree and want to compare it to an event log, use the plug-in “Visualise

2

https://www.win.tue.nl/promforum/
http://promtools.org


deviations on process tree” to start IvM without the mining controls & options,
but with alignments, deviations, animation and highlighting filters.

2 Process Trees

Before we introduce the notation, we first take a closer look at process trees. A
process tree is hierarchical and consists of several nodes that have children. For
instance, the process tree sequence

paycheck claim

consists of three nodes: ‘sequence’,

‘check claim’ and ‘pay’. The nodes ‘check claim’ and ‘pay’ are both children of
the node ‘sequence’.

Nodes express behaviour, in terms of their children. For instance, our ex-
ample process tree expresses that first ‘check claim’ is to be executed, and
afterwards ‘pay’. We use six types of nodes:

• xor expresses that one of its children needs to be executed. For instance,
the process tree xor

paycheck claim

expresses that either ‘check claim’ or

‘pay’ must be executed.

• sequence expresses that all of its children need to be executed in order.
For instance, the process tree sequence

paycheck claim

expresses that first ‘check

claim’ and afterwards ‘pay’ must be executed.

• interleaved expresses that all of its children needs to be executed, but
that these executions cannot overlap in time. For instance, the process
tree interleaved

paycheck claim

expresses that both ‘check claim’ or ‘pay’ must be

executed, but whichever is first must finish before the other one can start.

• concurrent expresses that all of its children need to be executed, and
they may overlap in time. For instance, the process tree concurrent

paycheck claim
expresses that both ‘check claim’ or ‘pay’ must be executed independently
of one another.

• or expresses that at least one of its children needs to be executed. If
multiple children are executed, they may overlap in time. For instance, the
process tree or

paycheck claim

expresses that either ‘check claim’ or ‘pay’

or both must be executed. If ‘check claim’ and ‘pay’ are both executed,
then these executions are independent.

3



(a) source (b) sink (c) exclusive choice

+

(d) concurrency

↔
(e) interleaving

O

(f) inclusive choice

Figure 2: IvM model constructs.

a

b

c

d

e

f

Figure 3: A model in IvM.

• loop expresses that the first child must be executed. After this first child
is executed, there is a choice between terminating or executing the second
child again followed by the first child and making the same choice again.
For instance, the process tree loop

paycheck claim

expresses that ‘check claim’

is always executed. After that, ‘pay’ followed by ‘check claim’ may be
executed repeatedly.

3 Model Visualisation

A key aspect of IvM is its visualisation of the discovered process model: on this
model, all further enhancements, which will be described later on this section,
will be visualised. In this section, we discuss our choice for this visualisation.

The IvM uses process trees behind the scenes to make sure the model is
always free of anomalies such as deadlocks and unconnected parts. For more
information about process trees, please refer to [4, Ch.2]. As process trees
are a mathematical notation, IvM shows models in an intuitive formalism
that closely resembles Petri nets, process trees and BPMN models. Figure 2
shows the constructs of these models. In such a model, each trace travers-
es edges from the source to the sink, thereby executing each activity on it-
s path. Figure 3 shows an example, which corresponds to the process tree
sequence(xor(a, b), concurrent(c, d), interleaved(e, f)). In case of concurrency,
the path is “split” in multiple branches, e.g. in our example c and d are both ex-
ecuted, and these paths are merged again at a concurrency join. Inclusive choice
and interleaving are similar, corresponding to their process tree semantics, i.e.
inclusive choice (or) splits the path into one or more subsequent branches, while
interleaving (interleaved) splits the paths but allows only one to be “active” at
the same time.

4



4 Controls & Parameters

As described, IvM will perform the steps described in Section 6, and show
intermediate results. It is not necessary to wait for IvM to complete these steps;
users can change parameters any time, and IvM will automatically recompute
the necessary steps. Figure 4 shows these parameters, and we will explain them
in more detail in this section.

4.1 Activities Slider

The activities slider controls the fraction of activities that is included in the
event log on which a discovery algorithm is applied. That is, before discovery,
the event log is filtered. The position of the slider (between 0 and 1) determines
how many of the activities remain in the filtered event log. For instance, the
log [〈a, b, c〉, 〈a, b〉, 〈a〉], has the frequency table [a3, b2, c], and if the activities
slider would be set to 0.4, then all events corresponding to the activities that
occur more than 0.4 times the occurrence of the most-occurring activity would
be included. In out example, the filtered event log would be [〈a, b〉2, 〈a〉], and to
this filtered event log, the discovery algorithm is applied. Notice that this only
affects the discovery, i.e. all other parts of the IvM including alignments and
animation are not affected by this slider.

Putting this and the paths slider (described next) all the way up to 1.0 and
setting the miner selector to IMf guarantees fitness. However, if the event log
contains life-cycle transitions besides complete, deviations might be shown.

4.2 Paths Slider

The paths slider controls the amount of noise filtering applied: if set to 1, then
no noise filtering is applied, while set at 0, maximum noise filtering is applied.
Technically, the slider sets the input for the discovery algorithm to 1 - the value
of the slider. The default is 0.8, which corresponds to 1−0.8 = 0.2 noise filtering
in IMf, IMflc and IMfa. Please refer to [4, Ch.6] for more information on the
mining algorithms.

Putting both sliders all the way up to 1.0 and setting the miner selector to
IMf guarantees fitness. However, the alignment of IvM always takes life-cycle
information into account, thus deviations might still be present.

4.3 Classifier Selector

The classifier selector controls what determines the activities of events: events in
XES-logs can have several data attributes [3], and this selector determines which
one of these data attributes determines the types of activities. Any combination
of event attributes can be chosen by using the checkboxes.

5



activities slider

paths slider

classifier selector

pre-mining filters switch

miner selector

edit model switch

visualisation mode selector

trace colouring switch

highlighting filters switch

trace view switch

model export button

view export button

highlighting filter information

computation/animation status

Figure 4: Controls of IvM.

6



4.4 Pre-Mining Filters Switch

The pre-mining filters switch opens a panel to set pre-mining filters. A pre-
mining filter does not alter the alignment, the performance measures or the
animation, but filters the log that is used to discover a model. To activate a
pre-mining filter, check its checkbox.

For instance, the pre-mining filter ’Trace filter’ allows to discover a model
using only the customers who spent more than e10,000.

4.5 Miner Selector

The miner selector allows to select which mining algorithm is to be used. De-
fault is IMf, other included options are the life-cycle algorithm IMflc and the
more-operators algorithm IMfa. We limit the choice to ease the users: these
algorithms were shown to be the most applicable to real-life event logs in the
evaluation of [4].

4.6 Edit Model Switch

The edit model switch opens a panel to manually edit the discovered model,
as explained below. This allows users to correct the discovery algorithm if its
result is not satisfactory, and to try the effect of a different, custom, model
on the same event log. In this panel, the currently discovered process tree is
displayed in a custom notation, and can be edited. While typing, the IvM
redoes computations automatically. A screenshot is shown in Figure 5.

The notation to edit process trees in IvM is as follows: each process tree
node should be on its own line. The white space preceding the node declaration
matters, i.e. a child should be more indented than its parent. Reserved keywords
are xor, sequence, concurrent, interleaved, or, loop and tau. Loops should be
given in an unary (loop(a)), binary (loop(a, b)) or ternary (loop(a, b, c)) form,
in which the c denotes the loop exit, i.e. loop(a, b, c) = sequence(loop(a, b), c).
Any other text is interpreted as an activity name. In case a keyword is used as
an activity name, it should be put in between double quotes (e.g. ”sequence” is
the activity called ‘sequence’).

In case the edited process tree contains a syntactical error, this will be shown
at the bottom of the panel, and an approximate location of the error will be
highlighted. The manual changes are overwritten if the automatic discovery is
triggered, however, ctrl z reverts the edit model view to a previous state.

4.7 Visualisation Mode Selector

The visualisation mode selector allows user to choose between several informa-
tion to be added to the model. There are four options:

• paths This is the default mode, showing the model; the numbers on the
activities and edges denote the total number of executions of each of them.

7



Figure 5: In the edit model panel, the model can be edited.

(a) Edge and activity.

(b) Model move. (c) Log move.

Figure 6: IvM visualisation mode concepts.

8



Figure 6a shows an example: activity b was executed 3952 times, just as
the incoming edge to the left of it.

• paths and deviations shows the model; the numbers in the activities
denote the total number of executions of each of them. Moreover, red-
dashed edges denote the results of alignments (which will be discussed in
Section 5): Figure 6b shows a model move, indicating that activity d was
skipped once in the event log, while the model said it should have been
executed. Figure 6c shows a log move, indicating that 9 times in the event
log, after the execution of activity b, an event happened in the event log
while this should not happen according to the model. In Section 5, we
will elaborate on deviation enhancements.

• paths and queue lengths shows the model, and denotes each activity
with the queue length in front of it, i.e. the number of cases waiting for this
activity to start. If the event log contains both events with enqueue and
start life-cycle information, this queue length is accurate. Otherwise, it is
estimated using the method described in [6]. This queue size is updated
as the animation progresses.

• paths and sojourn times shows the model, and denotes each activity
with the average sojourn time for that activity. Sojourn times are com-
puted using completion events. The sojourn times are not estimated, i.e.
if not both necessary completion events are present and have timestamps,
the activity instance is excluded from the average. Performance measures
can also be inspected by putting the mouse cursor on an activity: a pop-
up will show the performance measures and a histogram. Performance
measures are automatically updated when any log filtering is applied.

• paths and service times shows the model, and denotes each activity
with the average service time for that activity. Service times are computed
using start and completion events. The service times are not estimated,
i.e. if for an activity instance not both start and completion events are
present and have timestamps, that activity instance is not considered in
the average.

4.8 Trace Colouring Switch

The IvM can colour traces in the animation and the trace view. Using this
colouring, different categories of traces can be easily distinguished. For instance,
Figure 7 contains a screenshot of coloured traces in the animation and the trace
view (which we will explain later). This event log represents an ore mining
process, and the traces have been coloured with the hardness of the rock that
is being processed.

The trace colouring switch opens a panel to set up the trace colouring. In this
panel, a trace attribute can be chosen, as well as the derived properties ‘duration’
and ‘number of events’. IvM supports up to 7 colours, and if the attribute is

9



(a) In the animation.

(b) In the trace view. The little blocks on the left denote the category of rock
hardness (in the log, this was decoded with a number).

Figure 7: Coloured traces in IvM.

numeric, the domain of the numbers is split into 7 even parts automatically.
Date and time attributes are handled similarly. If the attribute is literal and
there are more than 7 different values, the colouring will remain disabled.

To enable quick enabling and disabling of the trace colouring, a checkbox
has been added to the left side of the panel, which should be checked to enable
trace colouring.

4.9 Highlighting Filters Switch

The highlighting filters switch opens a panel to set highlighting filters. A high-
lighting filter does not alter the model or the alignment, but filters the log that
is shown in the animation and the information projected on the activities and
edges of the model. If a highlighting filter is enabled, the highlighting filter
information will show this.

A highlighting filter can also be applied to an activity in the model: by
clicking on an activity (i.e. selecting it), the event log is filtered to only contain
traces for which this activity was executed in accordance with the model, i.e. log-
moves and model-moves are excluded. Hold the control-key to select multiple
activities; edges can be selected as well. The highlighting filter information will
textually show these click-highlighting filters as well.

To enable quick enabling and disabling of highlighting filters, a checkbox
has been added to the left side of each filter, which should be checked to enable

10



Figure 8: Trace view.

filtering.

4.10 Trace View Switch

To allow inspection of the traces, and to provide insight to the deviations be-
tween model and log on the log-level, IvM offers a trace view. The trace view
switch enables or disables the trace view.

Figure 8 shows a trace in this trace view: the name of the trace (i.e. the
concept:name extension) is displayed to the left of the events, which are the
coloured wedges to the right. Above the wedges, time stamps are displayed
in day-month-year hour:minute:second:millisecond. The wedge itself shows the
activity (depending on the classifier selector) of the event. Below the wedge,
the first line shows the life-cycle transition information (if that is not present, it
shows complete). Second, below the wedge the alignment information is shown:
in Figure 8, the first event is a synchronous event, the second is a model move
(“only in model”) and the third one is a log move (“only in log”).

4.11 Model Export Button

The model export button allows the current model to be exported as a Petri
net or process tree to the workbench of ProM.

4.12 View Export Button

The view export button exports the current image to an image file. Moreover,
the animation can be exported (rendered) as a movie, and some statistics about
the activities can be exported as a comma-separated-value (csv) file.

4.13 Changing the View

The model can be moved by dragging it, or by using the arrow keys. Zooming
in and out can be done with a scroll wheel, or with the key combination ctrl =
or ctrl -. Ctrl 0 (zero) resets the model to its initial position.

Once zoomed in, a navigation image will appear in the upper left corner. A
click on this navigation image will move the model to that position, and scrolling
while the mouse pointer is in the navigation image will zoom the navigation
image.

11



Figure 9: Visualisation of moves.

The graph direction, i.e. the position of the green and red start and end
places, can be changed by pressing ctrl d. The distance between activities and
edges can be altered using the key combinations ctrl q and ctrl w.

5 Interpreting Deviations

Process discovery algorithms might leave behaviour that was recorded in the
event log out of the discovered model, and might include behaviour in the mod-
el that is not recorded in the event log, as discovery algorithms try to represent
the behaviour of event logs into a certain representational bias. Therefore, the
discovered model should be evaluated before reliable conclusions can be drawn
from such models. Conformance checking techniques enable the evaluation of
models on three levels: summarative measures, projections on models and pro-
jections on event logs. Furthermore, the process model can be entered by hand
(using the “edit model” function) to circumvent process discovery and assess
an idealised or normative model. (See also the plug-in “Visualise deviations on
process tree”.)

In this section, we show the output and intermediate computation results of
alignments ([1]) are projected by IvM on process models and event logs, and
what conclusions can be reliably drawn from these projections.

A key property of alignments is that they provide a path through the model
that is most similar to the trace in the log. For instance, consider the following
alignment of the trace t = 〈b, c〉 and the model M = sequence

xor

cb

a

:

trace b - c
model - a c

This alignment provides several pieces of useful information about devia-
tions:

• According to the model, a should have been executed, however no such
event was found in the trace. This model move can be considered as

12



a ‘skip’ of a. In Figure 9, this concept is visualised on the model as a
red-dashed edge that bypasses a.

• According to the event log, b should have been executed, however the
model did not support this. This log move denotes that the event is
considered to be superfluous. In Figure 9, we show this concept being
visualised on a model: the red dashed self-loop indicates this log move.

Notice that these concepts are applicable to a variety of process model notations,
such as BPMN, Petri nets and YAWL.

Pitfalls. Despite the intuitiveness of the visualisations, these concepts should
be interpreted with care, as they might convey more information than is actually
available. For instance, the alignment shown in our example is not the only
‘optimal’ alignment. There may be other alignments with the same number
of log and model moves. For instance, the following alignment has the same
number of deviations:

trace - b c
model a b -

In this alignment, c is a log move instead of b.
Another example is the model sequence(a, b) and the trace 〈a, c〉. There two

optimal alignments:

trace a - c
model a b -

trace a c -
model a - b

Notice the difference in order between log move c and model move b: this order is
arbitrary. Nevertheless, in the visualisation, a choice had to be made to position
the log move before or after activity b.

The current alignment implementations traverse the state space defined by
log and model, and deterministically choose one option in case there are multi-
ple optimal possibilities. Which possibility is chosen is not always easily deter-
minable by the user, as it depends on internal ordering and sorting. For more
details, we refer to [1].

Furthermore, notice that the different alignments discussed here are all ‘opti-
mal’. However, there is no guarantee that an optimal alignment reflects reality,
i.e. a non-optimal alignment (i.e. with more deviations than an optimal align-
ment) could also explain the deviations between event log and model, and might
explain this better if domain knowledge is taken into account. Thus, one should
be careful interpreting alignments and the deviations shown in IvM.

13



gather
attributes

sort events

make log

filter log

discover
model

layout model align

layout
alignment

scale
animation

highlight
selection

animate

colour traces

compute
histograms

measure
performance

Figure 10: The architecture of IvM. The arrows denote constraints: a task is
started as soon as its preceding tasks are finished.

14



6 Steps & Architecture

The IvM performs several steps automatically. The computations steps can be
interrupted by the user at any time, and IvM will automatically redo steps on
user input. Figure 10 shows these steps and their dependencies. The main steps
are:

• Sort events.
Some event logs contain traces in which the timestamps are out of order.
For instance, in the trace 〈a14:00, b13:00〉 a happened first according to the
order of the events in the trace, but b occurs first according to the times-
tamps of the events. Such anomalies make animation and performance
measures unreliable, so IvM offers the user the choice to either sort the
events (in our example, IvM would continue as if 〈b13:00, a14:00〉 was given)
or disable the animation and performance measures.

• Filter log.
Let L be the event log. This step will remove events of which the activities
do not occur enough. See the activities slider and the pre-mining filters
in the Controls & Parameters settings for more information. This step is
also available (with even more fine-grained options) as a separate plug-in
of ProM (“Filter events”).

• Discover a process model from log L1,
which is done using either the algorithm IMf, IMflc or IMfa (depending
on the miner selector).

• Align the model and the log L.
The alignment is based on work described in [2]. Before aligning, the
discovered model is expanded (see [4, Ch.5]), i.e. each activity a is trans-
formed into a nested process tree sequence(ae, as, ac). This expansion
is used at all times, i.e. the alignment always takes enqueue, start and
completion events into account.

• Visualise the model and the alignment.

• Animate the alignment.

• Compute performance measures and visualise them.

References

[1] Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis,
Eindhoven University of Technology (2014) 12, 13

[2] Buijs, J.C.A.M.: Flexible Evolutionary Algorithms for Mining Structured
Process Models. Ph.D. thesis, Eindhoven University of Technology (2014)
15

15



[3] Günther, C., Verbeek, H.: XES v2.0 (2014), http://www.xes-standard.
org/ 5

[4] Leemans, S.J.J.: Robust process mining with guarantees. Ph.D. thesis, Eind-
hoven University of Technology (2017) 2, 4, 5, 7, 15

[5] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Process and deviation
exploration with Inductive visual Miner. In: Limonad, L., Weber, B. (ed-
s.) Proceedings of the BPM Demo Sessions 2014 Co-located with the 12th
International Conference on Business Process Management (BPM 2014),
Eindhoven, The Netherlands, September 10, 2014. CEUR Workshop Pro-
ceedings, vol. 1295, p. 46. CEUR-WS.org (2014), http://ceur-ws.org/

Vol-1295/paper19.pdf 2

[6] Senderovich, A., Leemans, S.J.J., Harel, S., Gal, A., Mandelbaum, A.,
van der Aalst, W.M.P.: Discovering queues from event logs with varying
levels of information. In: Reichert, M., Reijers, H.A. (eds.) Business Pro-
cess Management Workshops - BPM 2015, 13th International Workshops,
Innsbruck, Austria, August 31 - September 3, 2015, Revised Papers. Lecture
Notes in Business Information Processing, vol. 256, pp. 154–166. Springer
(2015), http://dx.doi.org/10.1007/978-3-319-42887-1_13 9

16

http://www.xes-standard.org/
http://www.xes-standard.org/
http://ceur-ws.org/Vol-1295/paper19.pdf
http://ceur-ws.org/Vol-1295/paper19.pdf
http://dx.doi.org/10.1007/978-3-319-42887-1_13

	Usage
	Process Trees
	Model Visualisation
	Controls & Parameters
	Activities Slider
	Paths Slider
	Classifier Selector
	Pre-Mining Filters Switch
	Miner Selector
	Edit Model Switch
	Visualisation Mode Selector
	Trace Colouring Switch
	Highlighting Filters Switch
	Trace View Switch
	Model Export Button
	View Export Button
	Changing the View

	Interpreting Deviations
	Steps & Architecture

